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Abstract

We examine fundamental properties of the universal exotic characteristic ho-
momorphism in the category of Lie algebroids, introduced by the authors in [4].
The properties under study include: (a) functorial properties with respect to arbi-
trary morphisms of Lie algebroids, (b) homotopy properties, (c) relationships with
the Koszul homomorphism for a pair of isotropy Lie algebras, (d) conditions under
which the universal exotic characteristic homomorphism is a monomorphism.

1 Introduction

In [4] we constructed some exotic characteristic homomorphism

�(A;B;r)# : H
�(ggg;B) �! H�(L)

for a triple (A;B;r), in which A is a regular Lie algebroid over a foliated manifold (M;F ),
B its regular subalgebroid on the same foliated manifold (M;F ), ggg the kernel of the anchor
of A, and r : L ! A a �at L-connection in A for an arbitrary Lie algebroid L over M .
The domain of this homomorphism is the Lie algebroid analog to the relative cohomology
algebra for a pair of Lie algebras de�ned in [5]. The exotic characteristic homomorphism
generalizes some known secondary characteristic classes: for �at principal �bre bundles
with a reduction (Kamber, Tondeur [13]), and two approaches to �at characteristic classes
for Lie algebroids, the one for regular Lie algebroids due to Kubarski [19] and the one for
representations of not necessarily regular Lie algebroids on vector bundles developed by
Crainic ([6], [7]).
For L = A and r = idA we obtain a new universal characteristic homomorphism

�(A;B)#, which is a factor of the characteristic homomorphism �(A;B;r)# for each �at
L-connection r : L! A, i.e.

�(A;B;r)# = r# ��(A;B)#: (1.1)
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Clearly, no class from the kernel of �(A;B)# is an obstruction to the given �at connection
r : L ! A being induced by a connection in B. For this reason, we raise the following
question (usually in the theory of characteristic classes, see for example [13], we ask for
the nontriviality of the characteristic homomorphisms):

� Is the exotic universal characteristic homomorphism �(A;B)# a monomor-
phism?

In sections 4 and 5, we give a positive answer under some assumptions.
The classical secondary (often also called exotic) characteristic homomorphism for a

principal bundle with a given reduction measures the incompatibility of two geometric
structures on the given principal bundle: its reduction and a �at connection. Namely, if
the �at connection is a connection in a given reduction, the exotic characteristic homo-
morphism is trivial, i.e. it is the zero homomorphism in all positive degrees (cf. [13]). The
exotic characteristic homomorphism �(A;B;r)# for Lie algebroids has a similar meaning.
The classical secondary homomorphism for a given principal bundle P and its reduc-

tion P 0 has a stronger property: it is trivial if a given �at connection has values in any
reduction homotopic to P 0.
Chapter 3 concerns homotopy properties of the generalized exotic homomorphism

�(A;B;r)# for Lie algebroids. We examine the notion of homotopic Lie subalgebroids,
introduced in [19] as a natural generalization of the notion of homotopic H-reductions
of a principal bundle. We also show functorial properties of �(A;B;r)# with respect to
homomorphisms of Lie algebroids (not necessarily over the identity on the base manifold).
Chapter 4 studies �(A;B)# in two cases. First, for the trivial case of Lie algebroids

over a point, i.e. for Lie algebras. This universal homomorphism is, in fact, equivalent
(up to sign) to the well known �Koszul homomorphism��(g;h)# : H

�(g=h)! H�(g) for a
pair of Lie algebras (g; h), h � g [14], [11]. In [11] the injectivity of �(g;h)# is considered
and used to investigate the cohomology algebra of homogeneous manifolds G=H. Next,
applying the Lie functor for principal �bre bundles gives a new universal homomorphism
for the reduction of a principal �bre bundle. It is a factor of the standard secondary
characteristic homomorphism �(P;P 0;!)# for any �at connection ! in P .
In Section 5, using functorial properties of the inclusion �x : (gggx;hhhx) ! (A;B) over

the map fxg ,!M , where gggx;hhhx are the isotropy algebras of the Lie algebroids A and B
at x 2M , we show a connection of �(A;B)# with the Koszul homomorphism for (gggx;hhhx).
We �nd some conditions under which �(A;B)#, for B � A, is a monomorphism. Our
considerations show that the Koszul homomorphism plays an essential role in the study
of exotic characteristic classes.
In the paper we suppose that the reader is familiar with Lie algebroids. For more

about Lie algebroids and connections on them we refer to [21], [12], [9], [20], [3].

2 Construction of Exotic Characteristic Homomor-
phism

We now brie�y explain the construction of the exotic characteristic homomorphism and
the universal exotic characteristic homomorphism on Lie algebroids from [4].
Let (A; [[�; �]];#A) be a regular Lie algebroid over a foliated manifold (M;F ), B its

regular subalgebroid on the same foliated manifold (M;F ), L a Lie algebroid over M
and r : L! A a �at L -connection in A. We call the triple

(A;B;r)
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an FS-Lie algebroid. Let � : F ! B be an arbitrary connection in B. Then j �� : F ! A
is a connection in A. Let �� : A! ggg be its connection form. Summarizing, we have a �at
L-connection r : L! A in A and the commutative diagram

0 ggg- A- -#A

�
�

F 0-

0 hhh-
[

B- F-#B
0:-

�
6

[

6

�
��

�

j

In the algebra �(
V
(ggg=hhh)�) of cross-sections of the bundle

V
(ggg=hhh)� we distinguish the

subalgebra (�(
V
(ggg=hhh)�))�(B) of invariant cross-sections with respect to the representation

ad^B;hhh of the Lie algebroid B in the vector bundle
V
(ggg=hhh)�, associated to the adjoint

representation adB;hhh : B ! A(ggg=hhh), adB;hhh (�) ([�]) = [[[�; �]]], � 2 �(B), � 2 �(ggg), and
where A(ggg=hhh) denotes the Lie algebroid of the vector bundle ggg=hhh. Recall that 	 2
(�(
Vk(ggg=hhh)�))�(B) if and only if

(#B � �)h	; [�1] ^ : : :^ [�k]i=
kX
j=1

(�1)j�1h	; [[[j � �; �j]]] ^ [�1] ^ : : : |̂ : : :^ [�k]i

for all � 2 �(B) and �j 2 �(ggg) (see [16]). In the space (�(
V
(ggg=hhh)�))

�(B) of invariant
cross-sections there exists a di¤erential operator �� de�ned by


��	; [�1] ^ : : : ^ [�k]
�
=
X
i<j

(�1)i+j+1h	; [[[�i; �j]]] ^ [�1] ^ : : : {̂ : : : |̂ : : : ^ [�k]i

(see [19]), and we obtain the cohomology algebra

H�(ggg;B) � H�
��
�
�^

(ggg=hhh)�
���(B)

; ��

�
:

Denote by 
(L) the algebra of di¤erential forms on L. The cohomology space induced
by the di¤erential operator dL in 
(L) will be denoted by H�(L).
Notice that the homomorphism !B;r : L ! ggg=hhh, !B;r(w) = [�(�� � r)(w)], does not

depend on the choice of the auxiliary connection � : F ! B, and !B;r = 0 if r takes
values in B.
Let us de�ne a homomorphism of algebras

�(A;B;r) :
�
�
�^k

(ggg=hhh)�
���(B)

�! 
(L) (2.1)

by
(�(A;B;r)	)x (w1 ^ : : : ^ wk) = h	x; !B;r(w1) ^ : : : ^ !B;r(wk)i ; wi 2 Ljx:

The homomorphism �(A;B;r) commutes with the di¤erentials �� and dL (see [4]). In this
way we obtain the cohomology homomorphism

�(A;B;r)# : H
�(ggg;B) �! H�(L):

In the case where L = A and r = idA : A! A is the identity map, we have the particular
case of a homomorphism for the pair (A;B):

�(A;B) � �(A;B;idA) : �(
^k

(ggg=hhh)�)�(B) �! 
(A);

(�(A;B)	)x (�1 ^ : : : ^ �k) = h	x; [���(�1)] ^ : : : ^ [���(�k)]i; �i 2 Ajx:
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The homomorphism �(A;B;r) can be written as the composition

�(A;B;r) : �(
V
(ggg=hhh)�)

�(A;B)�����! 
(A)
r����! 
(L);

where r� is the pullback of forms. For this reason, �(A;B) induces the cohomology homo-
morphism

�(A;B)# : H
�(ggg;B) �! H�(A);

which is a factor of �(A;B;r)# for every �at L-connection r : L! A:

�(A;B;r)# : H
�(ggg;B)

�(A;B)#������! H�(A)
r#���! H�(L): (2.2)

The map �(A;B;r)# is called the exotic characteristic homomorphism of the FS-Lie alge-
broid (A;B;r). We call elements of the subalgebra Im�(A;B;r)# � H�(L) exotic charac-
teristic classes of this algebroid. In particular, �(A;B)# = �(A;B;idA)# is the characteristic
homomorphism of the Lie subalgebroid B � A, which we call the universal exotic char-
acteristic homomorphism; the characteristic classes from its image are called universal
characteristic classes of the pair B � A.
The exotic characteristic homomorphism for FS-Lie algebroids generalizes the fol-

lowing known characteristic classes: for �at regular Lie algebroids (Kubarski), for �at
principal �bre bundles with a reduction (Kamber, Tondeur) and for representations of
Lie algebroids on vector bundles (Crainic).

1. For L = F we obtain the case in which r : F ! A is a usual connection in A. In
this way the exotic characteristic homomorphism is a generalization of one for a �at
regular Lie algebroid given in [19] (see [4]).

2. For L = TM and A = TP=G, B = TP 0=H (P 0 is an H-reduction of P ) we obtain
a case equivalent to the classical theory on principal �bre bundles [13] (see [4] and
Section 4.2 below for more details).

3. Let A = A(f) be the Lie algebroid of a vector bundle f over a manifold M , B =
A(f; fhg) � A its Riemannian reduction ([17]), L a Lie algebroid over M , and
r : L ! A(f) an L-connection on f. Let �# denote the exotic characteristic
homomorphism for the FS-Lie algebroid (A(f);A(f; fhg);r). If the vector bundle
f is nonorientable, or orientable and of odd rank n, then the domain of �# is
isomorphic to

V
(y1; y3; : : : ; yn0) where n0 is the largest odd integer less than or

equal to n and y2k�1 2 H4k�3(End f;A(f; fhg)) is represented by the multilinear
trace form ey2k�1 2 �(

V4k�3(End f= Sk f)�). Then the image of �# is generated
by the Crainic classes u1(f), u5(f),: : :,u4[n+34 ]�3

(f) (for details see [6], [7], [4]). If
f is orientable of even rank n = 2m with a volume form v, the domain of �#

is additionally generated by some class y2m 2 H2m(End f;A(f; fh; vg)) represented
by a form induced by the Pfa¢ an and where A(f; fh; vg) is the Lie algebroid of
the SO(n;R)-reduction L(f; fh; vg) of the frame bundle Lf of f (see [4]). Then
the algebra of exotic characteristic classes for (A(f);A(f; fh; vg);r) is generated by
u1(f), u5(f),: : :,u4[n+34 ]�3

(f) and additionally by �#(y2m). In [4] we give an example
of an FS-Lie algebroid where the Pfa¢ an induces a non-zero characteristic class.

4. The characteristic homomorphism �(A;B)# : H�(ggg;B) ! H�(A) depends only on
the inclusion i : B ,! A. This inclusion de�nes secondary characteristic classes
�2h�1(i) 2 H4h�3 (B) in the sense of Vaisman [23]. The class �1(#E) of the anchor
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#E of a Lie algebroid E coincides with the modular class mod(E) of E. We point
out (cf. [4], [6], [7], [8], [24]) that mod(E) can be expressed in terms of the exotic
characteristic homomorphism in case where the basic connection r � (r̂; �r) is �at.
For this, take �(A;B;r)# for the Lie algebroid A = A(E�T �M) of the vector bundle
E � T �M and its Riemannian reduction B and the basic connection r = (r̂; �r).
Then, mod(E) and �(A;B;r)# (y1) are equal up to a constant. Notice that

�1 (i) = mod(B)� i# (mod(A)) :

So, it can be expressed in terms of characteristic classes from the images of suitable
exotic characteristic homomorphisms.

From (2.2) one can see that for a pair of regular Lie algebroids (A;B), B � A, both
over a foliated manifold (M;F ), and for an arbitrary element � 2 H�(ggg;B) there exists a
(universal) cohomology class �(A;B)# (�) 2 H�(A) such that for any Lie algebroid L over
M and a �at L-connection r : L! A the equality

�(A;B;r)# (�) = r#
�
�(A;B)# (�)

�
holds. Therefore, no element from the kernel of �(A;B)# can be used to compare the �at
connection r with a reduction B � A. Hence the following is of interest:

Problem 2.1 Is the characteristic homomorphism�(A;B)# : H
�(ggg;B)! H�(A) a monomor-

phism for a given B � A?

The answer is yes in many cases, as we show below (see Section 5.2 for integrable transitive
Lie algebroids and Section 5.3 for non-integrable transitive Lie algebroids).

3 Functoriality and Homotopy Properties

3.1 Functoriality

Let (A;B) and (A0; B0) be two pairs of regular Lie algebroids over (M;F ) and (M 0; F 0) ;
respectively, where B � A, B0 � A0, and let H : A0 ! A be a homomorphism of
Lie algebroids over a mapping f : (M 0; F 0) ! (M;F ) of foliated manifolds such that
H[B0] � B. We write (H; f) : (A0; B0)! (A;B). Let H+# : H�(ggg;B)! H�(ggg0; B0) be the
homomorphism of cohomology algebras induced by the pullback H+ � : �(

Vk(ggg=hhh)�) !
�(
Vk(ggg0=hhh0)�) de�ned by


H+ � (	)x ; [�
0
1] ^ : : : ^ [� 0k]

�
=


	f(x);

�
H+ (� 01)

�
^ : : : ^

�
H+ (� 0k)

��
where 	 2 �(

Vk(ggg=hhh)�), x 2M , � 01; : : : ; � 0k 2 ggg0x, and where H+ : ggg0! ggg is the restriction
of H to ggg0 (see [19, Proposition 4.2]).

Theorem 3.1 (The functoriality of �(A;B)#) For a given pair of regular Lie alge-
broids (A;B), (A0; B0) and a homomorphism (H; f) : (A0; B0) ! (A;B) we have the
commutative diagram

H�(ggg0; B0) H�(A0):-
�(A0;B0)#

H�(ggg;B) H�(A)-
�(A;B)#

?

H+#

?

H#
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Proof. One can see that H+ � ��0(u0) � ��(Hu0) 2 hhh for all u0 2 A0, where � and �0
are auxiliary connections in B and B0, respectively. Applying this fact, it is su¢ cient to
check the commutativity of the diagram on the level of forms. The calculations are left
to the reader.

De�nition 3.2 Let (A0; B0;r0) and (A;B;r) be two FS-Lie algebroids on foliated man-
ifolds (M 0; F 0) and (M;F ), respectively, where r : L ! A and r0 : L0 ! A0 are �at
connections. By a homomorphism

H : (A0; B0;r0) �! (A;B;r)

over f : (M 0; F 0)! (M;F ) we mean a pair (H; h) such that:

� H : A0 ! A is a homomorphism of regular Lie algebroids over f and H[B0] � B,

� h : L0 ! L is also a homomorphism of Lie algebroids over f ,

� r � h = H � r0:

Clearly, h# � r# = r0# �H#. So, from (2.2) and Theorem 3.1 we obtain

Theorem 3.3 (The functoriality of �(A;B;r)#) The following diagram commutes:

H�(ggg0; B0) H�(L0):-
�(A0;B0;r0)#

H�(ggg;B) H�(L)-
�(A;B;r)#

?

H+#

?

h#

3.2 Homotopy Invariance

We recall the de�nition of homotopy between homomorphisms of Lie algebroids.

De�nition 3.4 [18] Let H0; H1 : L0 ! L be two homomorphisms of Lie algebroids. By
a homotopy joining H0 to H1 we mean a homomorphism of Lie algebroids

H : TR� L0 �! L

such that H(�0; �) = H0 and H(�1; �) = H1, where �0 and �1 are null vectors tangent to R
at 0 and 1, respectively. We say that H0 and H1 are homotopic and write H0 � H1 . We
say that F : L0 ! L is a homotopy equivalence if there is a homomorphism G : L ! L0

such that G � F � idL0 and F �G � idL .

The homotopy H : TR � L0 ! L determines a chain homotopy operator ([18],
[2]) which implies that H#

0 = H
#
1 : H

�(L)! H�(L0).

De�nition 3.5 [19] LetB0; B1 � A be two Lie subalgebroids (both over the same foliated
manifold (M;F )). The Lie subalgebroidsB0 andB1 are said to be homotopic if there exists
a Lie subalgebroid B � TR� A over (R�M;TR� F ) such that for t 2 f0; 1g,

� 2 Bt if and only if (�t; �) 2 B (3.1)

for � 2 A. A Lie subalgebroid B � TR � A over (R�M;TR� F ) satisfying (3.1) is
called a subalgebroid joining B0 to B1.
See [19, Proposition 5.2] for a comparison of the homotopy of subbundles of a principal

bundle and the homotopy of subalgebroids.
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Let B0; B1 be two homotopic Lie subalgebroids over (M;F ) and let B � TR� A be
a Lie subalgebroid of TR� A joining B0 to B1, t 2 f0; 1g. Consider the homomorphism
of Lie algebroids FAt : A! TR� A, �x 7! (�t; �x), over ft : M ! R�M , ft(x) = (t; x).
Then (3.1) yields FAt [Bt] � B. Applying the functoriality of �t# � �(A;Bt)# and �(A;B)#

(see Theorem 3.1), we obtain the commutativity of the diagram

H�(0�ggg;B) H�(TR�A)-
�(TR�A;B)#

H�(ggg;B0) H�(A)-�0#

6

F0
+#

6

F0
A#

H�(ggg;B1) H�(A)-
�1#

?

F1
+#

?

F1
A#'

'

-

�

where F+#t �
�
FAt
�+#

. In [19] it is shown that each F+#t is an isomorphism of algebras.
We mention that in the proof of this fact we use Theorem 20.2 of [20] concerning invariant
cross-sections over R�M .
For any �at L-connection r : L! A, the induced TR�L-connection idTR�r is also

�at. Since FAt determines a homomorphism

(A;Bt;r) �! (TR�A;B; idTR�r)

of FS-Lie algebroids over ft :M ! R�M , we can complete the previous diagram to

H�(0�ggg;B) H�(TR�A)-
�(TR�A;B)#

H�(ggg;B0) H�(A)-�0#

6

F0
+#

6

F0
A#

H�(TR�L)-
(id�r)#

H�(L)

6

F0
L#

-r#

H�(ggg;B1) H�(A)-
�1#

?

F1
+#

?

F1
A#

H�(L)
?

F1
L#

-
r#

'

'

-

�

Observe that the rows of the above diagram are characteristic homomorphisms of
FS-Lie algebroids. Since FL0 ; F

L
1 : L ! TR � L are homotopic homomorphisms, we

have FL#0 = FL#1 . To prove the homotopy independence of the exotic characteristic
homomorphism (in the sense of De�nition 3.5), it is su¢ cient to show that FL#0 ; FL#1 are
isomorphisms.
Let to 2 R. We shall see below that FLto is a homotopy equivalence. Take the projection

� : TR � L ! L (over pr2 : R � M ! M). Of course, � is a homomorphism of Lie
algebroids. Note that FLto � � =

�
t̂o
�
� � idL, where t̂o : R! R is de�ned by t 7! to. We

take � : R� R! R, (s; t) 7! to + s (t� to). Since the di¤erential f� : TM ! TN of
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any smooth mapping f : M ! N is a homomorphism of Lie algebroids [18], the map
� � : T (R� R) = TR�TR! TR is a homomorphism of Lie algebroids. We put

H : TR� (TR� L) �! TR� L;
H = � � � idL :

Since

H (�0; �; �) = � (0; �)� � idL =
�
t̂o
�
��L = F

L
to � �;

H (�1; �; �) = � (�; 1)� � idL = idTR�L;

H is a homotopy joining FLto � � to idTR�L, i.e. FLto � � � idTR�L. Evidently, � �FLto = idL.
Therefore, each FLt is an isomorphism.
These facts lead us to the following result:

Theorem 3.6 (The Rigidity Theorem) If B0; B1 � A are homotopic subalgebroids
of A and r : L! A is a �at L-connection in A, then the characteristic homomorphisms
�(A;B0;r)# : H

�(ggg;B0)! H�(L) and �(A;B1;r)# : H
�(ggg;B1)! H�(L) are equivalent in the

sense that there exists an isomorphism of algebras

� : H�(ggg;B0)
'�! H�(ggg;B1)

such that
�(A;B1;r)# � � = �(A;B0;r)#:

In particular, �(A;B1)# � � = �(A;B0)#.

Corollary 3.7 Let f be a vector bundle, A(f) its Lie algebroid, B0 = A(f; fh0g) and
B1 = A(f; fh1g) Riemannian reductions of A(f), corresponding to Riemannian metrics
h0, h1, respectively. Then

�(A(f);A(f;fh0g))# = �(A(f);A(f;fh1g))#: (3.2)

Proof. The Lie subalgebroids B0 = A(f; fh0g) and B1 = A(f; fh1g) are homotopic
[19, Theorem 5.5]. Therefore, according to the Rigidity Theorem 3.6, we obtain (3.2).
The last corollary shows that the characteristic homomorphism for the pair A(f),

A(f; fhg) is an intrinsic notion for A(f) not depending on the metric h.

4 Particular Cases of the Universal Exotic Charac-
teristic Homomorphism

4.1 The Koszul Homomorphism

In this section, we will consider the characteristic homomorphism �(g;h)# for a pair of Lie
algebras (g; h), h � g , and give a class of such pairs for which �(g;h)# is a monomorphism.
An arbitrary Lie algebra is a Lie algebroid over a point with the zero map as an anchor.

Consider the homomorphism of pairs of Lie algebras (idg; 0) : (g; 0) ! (g; h), h � g. By
the de�nition of the universal exotic characteristic homomorphism, observe that

�(g;0)# : H
�(g; 0) = H�(g)

(� idg)#������! H�(g):
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Now, the functoriality of (idg; 0) described in Theorem 3.1 implies that

�(g;h)# = �(g;0)# � (idg)+# = (� idg)+# : H�(g; h) �! H�(g):

Let (
V
g�)ih=0;�h=0 be the basic subalgebra of

V
g�, i.e. the subalgebra of invariant and

horizontal elements of
V
g� with respect to the Lie subalgebra h. Denote by k the inclusion

from (
V
g�)ih=0;�h=0 into

V
g� (see [11, p. 412]). Moreover, consider the projection s :

g! g=h and the map

(�s)� :
�^

(g=h)�
�h
�!

�^
g�
�
ih=0;�h=0

given by
((�s)�	) (x1 ^ : : : ^ xk) = h	; (�s (x1)) ^ : : : ^ (�s (xk))i

for 	 2 (
Vk(g=h)�)h, x1; : : : ; xk 2 g. One can see that (�s)� is an isomorphism of algebras

and
�(g;h) = k � (�s)� :

Therefore, the exotic characteristic homomorphism �(g;h)# for the pair (g; h) can be writ-
ten as the composition

�(g;h)# : H
�(g; h)

(�s)#����!�= H�(g=h)
k#���! H�(g);

where H�(g=h) denotes the cohomology algebra H�((
V
g�)ih=0;�h=0; dg).

Example 4.1 Let (g; h) be a reductive pair of Lie algebras (h � g), and s : g! g=h the
canonical projection. Theorems IX and X from [11, sections 10.18, 10.19] imply that k#

is injective if and only if H�(g=h) is generated by 1 and odd-degree elements. Therefore,
because (�s)# is an isomorphism of algebras, it follows that �(g;h)# is injective if and
only if H�(g; h) is generated by 1 and odd-degree elements. In a wide class of pairs of
Lie algebras (g; h) such that h is reductive in g, the homomorphism k# is injective if and
only if h is noncohomologous to zero (brie�y: n.c.z.) in g (i.e. if the homomorphism of
algebras H�(g)! H�(h) induced by the inclusion h ,! g is surjective). Tables I, II and III
at the end of Section XI of [11] contain many n.c.z. pairs, e.g.: (gl(n); so(n)) for odd n;
(so(n;C); so(k;C)) for k < n; (so(2m+ 1); so(2k + 1)), (so(2m); so(2k + 1)) for k < m.

In view of the above, the examples below show that the exotic characteristic homo-
morphism for the reductive pair (End(V ); Sk(V )) of Lie algebras is a monomorphism for
any odd-dimensional vector space V and is not a monomorphism for even-dimensional
ones.

Example 4.2 (The pair of Lie algebras (End(V ); Sk(V ))) (a) Let V be a vector space
of odd dimension, dimV = 2m� 1. Then

H�(End(V ); Sk(V )) �= H�(gl(2m� 1;R); O(2m� 1)) �=
^
(y1; y3; : : : ; y2m�1);

where y2k�1 2 H4k�3 (End(V ); Sk(V )) are represented by the multilinear trace forms ([10],
[13]). We conclude from the previous example that �(End(V );Sk(V ))# is injective:
(b) In the case where V is an even-dimensional vector space, we have [10]

H�(End(V ); Sk(V )) �= H�(gl(2m;R); SO(2m)) �=
^
(y1; y3; : : : ; y2m�1; y2m);

where 2m = dimV , y2k�1 are as above and y2m 2 H2m(End(V ); Sk(V )) is a nonzero class
determined by the Pfa¢ an. For details concerning the elements y2m see [4]. Example 4.1
shows that if dimV is even; the homomorphism �(End(V );Sk(V ))# is not a monomorphism.
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Example 4.3 Let g, h be Lie algebras and g�h their direct product. The characteristic
homomorphism of the pair (g� h; h) is a monomorphism. It is equal to

�(g�h;h)# : H
�(g) �! H�(g)
 H�(h); �#(g�h;h) ([�]) = [(�1)j�j � �]
 1:

4.2 The Exotic Universal Characteristic Homomorphism of Prin-
cipal Fibre Subbundles

We recall brie�y a connection between the secondary characteristic homomorphism

�(P;P 0;!)# : H
�(g; H) �! H�dR(M)

for �at principal bundles [13] and the exotic characteristic homomorphism

�(A(P );A(P 0);!)# : H
�(ggg;A(P

0)) �! H�dR(M)

for the induced pair of Lie algebroids A(P ), A(P 0) and a suitable �at connection in A(P )
determined by ! (cf. [4]) and denoted here also by !. Namely, there exists an isomorphism
of algebras � : H�(g; H) '�! H�(ggg;A(P 0)) such that �(A(P );A(P 0);!)# � � = �(P;P 0;!)# (see
[19, Theorem 6.1]). This leads to a new universal characteristic homomorphism

�(P;P 0)# = �(A(P );A(P 0))# � � : H�(g; H) �! Hr�dR(P )

where Hr�dR(P ) denotes the cohomology space of right-invariant forms in P . Then�(P;P 0;!)#

can be described as the composition

�(P;P 0;!)# : H
�(g; H)

�(P;P 0)#������! Hr�dR(P ) = H
�(A((P ))

!#���! H�dR(M)

In particular, if G is a compact, connected Lie group and P 0 is a connected H-reduction
in a G-principal bundle P , then Hr�dR(P ) = H

�
dR(P ) and �(P;P 0)# acts from H�(g; H) into

H�(P ).

5 When the Universal Exotic Characteristic Homo-
morphism for a Pair of Transitive Lie Algebroids
is a Monomorphism

5.1 The Koszul Homomorphism Versus the Universal Exotic
Characteristic Homomorphism

Consider a pair (A;B), B � A, of transitive Lie algebroids on a manifold M , x 2M , and
a pair of adjoint Lie algebras (gggx;hhhx). Clearly, the inclusion �x : (gggx;hhhx) ! (A;B) is a
homomorphism of pairs of Lie algebroids over fxg ,! M . Theorem 3.1 gives rise to the
commutative diagram

H�(gggx;hhhx) H�(gggx):-
�(gggx;hhhx)#

H�(ggg;B) H�(A)-
�(A;B)#

?

�+#x
?

�#x

(5.1)
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Obviously, if the left and bottom homomorphisms are monomorphisms, then so is
�(A;B)#. The homomorphism �+#x is a monomorphism if each invariant element v 2
(
V
(gggx=hhh

�
x))

hx can be extended to a global invariant cross-section of the vector bundleV
(ggg=hhh)�. Consequently, we obtain the following theorem linking the Koszul homomor-

phism with exotic characteristic classes:

Theorem 5.1 Let (A;B) be a pair of transitive Lie algebroids over a manifold M , B �
A, (gggx;hhhx) be a pair of adjoint Lie algebras at x 2 M , and suppose each element of
(
V
(gggx=hhhx)

�)hx extends to an invariant cross-section of
V
(ggg=hhh)�: If the Koszul homomor-

phism �(gggx;hhhx)# for the pair (gggx;hhhx) is a monomorphism, then �(A;B)# is a monomor-
phism.

Remark 5.2 Theorem 6.5.15 of [21] implies that an element of (
V
(gggx=hhhx)

�)hx, x 2 M ,
can be extended to an invariant cross-section of

V
(ggg=hhh)� if and only if it is invariant with

respect to the �1 (M)-action on (
V
(gggx=hhhx)

�)
hx via the holonomy morphism of the �at

B-connection rad^B;hhh = ad^B; hhh � 
 in the bundle�^
(ggg=hhh)�

� hhh

=
G
x2M

�^
(gggx=hhhx)

�
�hx

where 
 : TM ! B is any TM -connection in B and ad^B;hhh is the representation of B in

(
V
(ggg=hhh)�)

hhh induced by ad^B;hhh.

In the next two sections we give examples of pairs B � A satisfying the assumptions
of the last theorem, among which are non-integrable Lie algebroids.

5.2 The Case of Integrable Lie Algebroids

Take the Lie algebroid A(P ) of some principal G-bundle P and its subalgebroid A(P 0)
for some reduction P 0 of P with connected structural Lie group H � G. Notice that, on
account of Theorem 1.1 in [15], for any transitive Lie subalgebroid B � A(P ) there exists
a connected reduction P 0 of P having B as its Lie algebroid, i.e. B = A(P 0). However,
in general, the structural Lie group of P 0 need not be connected.
Let g and h denote the Lie algebras of G andH, respectively. The representation adB;hhh

is integrable, because it is the di¤erential of the representation AdP 0;hhh : P 0 ! L(ggg=hhh) of
the principal �bre bundle P 0 de�ned by z 7! [ẑ] (see [19, p. 218]). We recall that for each
z 2 P 0, the isomorphism ẑ : g ! gggx; v 7! [(Az)�e v] (Az : G ! P; a 7! za) maps h onto
hhhx (see [16, Sect. 5.1]) and determines an isomorphism [ẑ] : g=h! gggx=hhhx. Therefore (see
also [16, Prop. 5.5.2-3]), we have a natural isomorphism

� :
�^

(gggx=hhhx)
�
�H �=�!

�
�
�^

(ggg=hhh�)
���(B)

:

By the connectedness of H, (
V
(gggx=hhhx)

�)H = (
V
(gggx=hhhx)

�)hx, which implies that �+#x is
an isomorphism. Thus we see that the assumptions of Theorem 5.1 hold for any pair of
integrable Lie algebroids A and B (B � A), i.e. if A is a Lie algebroid of some principal
bundle P and B is its Lie subalgebroid of some reduction of P .
Now, Theorem 5.1 implies the following result:
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Theorem 5.3 Let A be a Lie algebroid of some principal bundle P (M;G), B = A(P 0) its
Lie subalgebroid for some reduction P 0 of P , (gggx;hhhx) be a pair of adjoint Lie algebras at
x 2 M . If the Koszul homomorphism �(gggx;hhhx)# for the pair (gggx;hhhx) is a monomorphism
for any x 2 M , then the universal exotic characteristic homomorphism �(A;B)# is a
monomorphism.

Remark 5.4 The example in [4, Sect. 3.3] of a nontrivial universal characteristic class
determined by the Pfa¢ an shows that there exists a pair of transitive and integrable Lie
algebroids (A;B) for which the left arrow in the diagram (5.1) is an isomorphism, the
bottom one is not a monomorphism, but the top one is a monomorphism.

5.3 The Case of Non-integrable Lie Algebroids of Some TC-
foliations

We start with the following general theorem on Lie algebroids with abelian isotropy Lie
algebras.

Theorem 5.5 Let (A;B) with B � A be a pair of transitive Lie algebroids over a mani-
fold M , for which the kernels ggg;hhh of the anchors are abelian Lie algebra bundles and let
x 2 M . If each element of

V
(gggx=hhhx)

� can be extended to an invariant cross-section ofV
(ggg=hhh)�, then the universal exotic characteristic homomorphism �(A;B)# is a monomor-

phism.

Proof. Let x 2 M . Since the homomorphism H�(gggx) =
V
(gggx)

� !
V
(hhhx)

� = H�(hhhx)
induced by the inclusion gggx ,! hhhx is surjective and (gggx;hhhx) is a reductive pair of Lie
algebras, the Koszul homomorphism �(gggx;hhhx)# is injective (see Example 4.1). Since the
isotropy algebras ggg and hhh are abelian, every v 2

V
(gggx=hhhx)

� is invariant, i.e.
V
(gggx=hhhx)

� =

(
V
(gggx=hhhx)

�)h
hhx. Theorem 5.1 now shows that if each element of

V
(gggx=hhhx)

� can be extended
to an invariant cross-section of

V
(ggg=hhh)�, then �(A;B)# is a monomorphism.

We �nd non-integrable Lie algebroids satisfying the assumptions of the last theo-
rem. Our examples are Lie algebroids A(G;H) of transversely complete foliations (TC-
foliations for short) [16].
Take a Lie group G and its connected nonclosed Lie subgroup H. Let A(G;H) be a

Lie algebroid of a TC-foliation. Let us recall that A(G;H) is the Lie algebroid of left
cosets of H in G (see [1], [16]). Notice that such Lie algebroids are non-integrable if and
only if the TC-foliation is not developable (see [1]) � which occurs in the case where G
is connected and simply connected.
These TC-foliations play an essential role in the theory of Riemannian foliations (see

[22]). Lie algebroids A(G;H) are cohomologically quite complicated. There are examples
of non-integrable Lie algebroids A(G;H) for which the Chern-Weil homomorphism is
nontrivial [16].
Denote by g and h the Lie algebras of G and H, respectively. Moreover, let H denote

the closure of H. Using trivializations of TG = G� g given by left-invariant vector �elds
one can check that A(G;H) is a vector bundle over G=H which is the quotient space
(G� (g=h))H with respect to the right action of H on G and the adjoint action of H on
g=h. Next, recall that there exists an isomorphism

c : l(G;H)
�=�! �(A(G;H))

12



of the module l(G;H) of transverse �elds onto the module of global cross-sections of
A(G;H). Notice that c is also an isomorphism of real Lie algebras.
Let s denote the Lie algebra of H. Every right-invariant vector �eld Y w generated

by w 2 g and every left-invariant vector �eld Xw generated by w 2 s is a transverse
�eld [16]. Moreover, the Lie algebra bundle ggg associated with A(G;H) is a trivial vector
bundle of abelian Lie algebras with the trivializationG=H�s=h! ggg de�ned by (x; [w]) 7!
(c(Xw)) (x).
Let H1 and H2 be Lie subgroups of G such that

H1  H2  T  G where T = H1 = H2.

Denote by h1, h2 and t the Lie algebras of H1, H2 and T , respectively. Denote

A = A(G;H1):

Consider the Lie subalgebroid
B = A(G;H2):

The Lie algebra bundles of A and B are ggg = G=T�t=h1 and hhh = G=T� t=h2, respectively.
Take an element

�o 2
^k

(gggx=hhhx)
� �=

^k
((t=h1) = (t=h2))

�

and the constant cross-section � of the vector bundle
^k

(ggg=hhh)� which is equal to �o at
all points of G=T .
We will show that � is invariant. Let �1; : : : ; �k 2 �(ggg) = �(G=T � t=h1) and � 2

�(B). Every �i (i 2 f1; : : : ; kg) can be written in the form
P

ji
f jii � c(Xwji

) where
f jii 2 C1(G=T ), wji 2 t. We see that locally � =

P
j h

j � c(Y gj) for some hj 2 C1(G=T )
and gj 2 g. Denote by #2 the anchor of the Lie algebroid A(G;H2). Then

[[�; �r]] =
X

j;jr
hj �

�
#2 � c

�
Y gj
�� �

f jrr
�
c
�
Xwjr

�
(5.2)

(see [16, p. 56]). Since � is a constant cross-section of
^k

(ggg=hhh)�, since vector �elds are
derivations of the algebra of smooth functions, and since (5.2) holds, we deduce that

(#2 � �) h�; [�1] ^ : : :^ [�k]i

=
X
j

X
j1;:::;jk

hj
�
#2 � c

�
Y gj
�� �

f j11 � � � f
jk
k

D
�;
�
c
�
Xwj1

��
^ : : :^

h
c
�
Xwjk

�iE�
=
X
j;r

X
j1;:::;jk

hjf j11 � � �
�
#2 � c

�
Y gj
�� �

f jrr
�
� � � f jkk

D
�;
�
c
�
Xwj1

��
^ : : : ^

h
c
�
Xwjk

�iE
=
X
r

(�1)r�1
D
�;
hX

j;jr
hj
�
#2 � c

�
Y gj
�� �

f jrr
�
c
�
Xwjr

�i
^ [�1] ^ : : : br : : :^ [�k]E

=
X
r

(�1)r�1 h�; [[�; �r]] ^ [�1] ^ : : : br : : :^ [�k]i ;
which proves that � is an invariant cross-section of

^k
(ggg=hhh)�.

Since every element of
V
(gggx=hhhx)

� can be extended to an invariant cross-section ofV
(ggg=hhh)�, Theorem 5.5 now shows the following

Theorem 5.6 Let G be a Lie group, and H1 and H2 be its Lie subgroups such that
H1  H2  H1 = H2  G. Then the universal exotic characteristic homomorphism for
the pair of Lie algebroids A(G;H2) � A(G;H1) is a monomorphism. Additionally, if G is
connected and simply connected, the algebroids A(G;H2) and A(G;H1) are non-integrable.
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